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Pyridobenzodiazepines are an important class of com-
pounds in central nervous system related diseases. For
example, clozapine-like analogs such as pyrido[2,3-b]-
[1,4]benzodiazepine 1 and pyrido[2,3-b][1,4]benzodiazepine
2 are reported as neuroleptics (Scheme 1).1 In addition,
pyridobenzodiazepine derivatives have been studied as
potential agents to modulate activities of the central nervous
system and vasopressin V2 receptor.2 Existing synthetic
strategies to pyridobenzodiazepins have generally relied on
preparation of the key lactam ring system and subsequent
functionalization of the heterocyclic scaffold to introduce
additional substituents (Scheme 1).3 As such, most pyrido-
benzodiazepines reported contain an amino group at the
6-position of the heterocyclic nucleus. Kaczmarek et al. did
report a sequential acylation and cyclization approach to C6-
aryl and alkyl substituted pyridobenzodiazepines, but with
very limited scope.4

Given the interesting biological activities displayed by the
benzodiazepine family of heterocyclic compounds, new
methods enabling the efficient preparation of libraries based
on the benzodiazepine scaffold should be useful for lead
generation of various drug discovery programs.5 We recently
reported a series of synthetic methodologies, which relied
on Bischler-Napeiralski type cyclization reactions as the key
transformation step, that are useful to rapidly access various
heterocyclic scaffolds with benzodiazepine as the core
nucleus.6 A logical expansion of these cyclization reactions
leading to pyridobenzodiazepines could be envisioned as
shown in Scheme 2.

The strategy outlined in Scheme 2 should allow ready
access to pyridobenzodiazepines with various carbon-derived
substituents at the 6-position of the central core. Given the
large number of commercially available carboxylic acids and
anilines, this method should be applicable to synthesis of
libraries with high diversity enabling rapid exploration of
the structure–activity relationship (SAR) of the 6-position
and concurrently at several other positions. Herein, the

investigation of this new strategy and method development
toward a pyridobenzodiazepine library are reported.

The preparation of 2-substituted pyridines 3 required for
the proposed synthetic route to pyridobenzodiazepines from
2-chloro-3-nitropyridine 7 is depicted in Scheme 3, and the
results are summarized in Table 1.

Substitution of the chloro group in 7 with an amine was
carried out using either potassium carbonate (entries 1, 2, 4,
and 6) or TEA (entries 3, 5, and 7-9) as the base to give
pyridines 8 in moderate to excellent yields. Reduction of
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Scheme 1. Examples of Pyridobenzodiazepines as
Neuroleptics

Scheme 2. Efficient Alternative Route to
Pyridobenzodiazepines

Scheme 3. Preparation of Diaminopyridine Precursors 3a

a Reagents and conditions: (i) Ar-N(R2)H, K2CO3, i-PrOH, reflux; (ii)
Ar-N(R2)H, TEA, n-BuOH, reflux; (iii) Pd-C (10%), H2, EtOH; (iv) Fe,
NH4Cl, EtOH, reflux.

Table 1. Summary for the Syntheses of Pyridines 8 and 3

entry R2 R3 8a-j yielda 3a-j yieldb

1 Me H 8a 70%c 3a 90%
2 Me p-MeO 8bf c 3b 71%e

3 Me p-Me 8cf 3c 84%e

4 Me p-F 8df c 3d 56%e

5 Me p-Cl 8e 82% 3e 72%d

6 Me o-Me 8f 62%c 3f 70%
7 Me m-Me 8g 75% 3g 82%
8 Et H 8h 85% 3h 75%
9 Bn H 8i 85% 3i 70%d

10 H H 8j 74% 3j 90%
a Based on isolated 8a-j, condition ii, Scheme 1 (except where

designated). b Based on isolated 3a-j, condition iii, Scheme 1 (except
where designated). c Condition i, Scheme 1. d Condition iv, Scheme 1.
e Two steps. f Not purified.
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the nitro group in 8 was accomplished under hydrogenation
conditions although an iron-ammonium chloride reduction
reaction was used to avoid potential dehalogenation and
removal of benzyl when a chloro group or benzyl group is
present (entries 5 and 9).1a,6a

Pyridine 3a was selected to test the proposed synthesis of
pyridobenzodiazepines, and the results are shown in Table
2. Previously, the condition of polyphosphoric acid (PPA)
in POCl3 was reported to be effective at promoting
Bischler-Napeiralski type cyclization reactions.6a Thus,
treatment of pyridine 3a and benzoic acid with PPA in
refluxing POCl3 (110 °C) gave the desired product 5.1 in
moderate yield (58%, entry 1) on the first attempt. Lowering
the reaction temperature to 95 °C improved the yield of
compound 5.1 (88%, entry 3), indicating that perhaps milder
reaction conditions could further improve the yield of the
desired pyridobenzodiazepines. Therefore, optimization of
reaction conditions was investigated. Further lowering the
temperature led to lower yield (entry 2). The substitution of
POCl3 with either toluene or xylene as the solvent yielded
intermediate amide 9.1 (entries 4 and 5), suggesting that
POCl3 is required to effect the cyclization reaction. When
the cyclization reaction was conducted in POCl3 without
presence of PPA compound 5.1 was obtained in 76% yield
after refluxing for 12 h (entry 6), which indicates that PPA
is not required for the current cyclization reaction. To reduce
the amount of POCl3, the cyclization reaction was studied
by introduction of solvents such as dichloromethane and
acetonitrile (entries 7–9). Decreasing POCl3 to 4 equiv and
using acetonitrile as the solvent generated compound 5.1 in
excellent yield (91%, entry 8). However, further reducing
the amount of POCl3 to 2 equiv (entry 9) or using dichloro-
methane as the solvent (entry 7) both gave only intermediate
amide 9.1. Therefore, the reaction conditions of 4 equiv of
POCl3 in refluxing acetonitrile were identified as optimum
for the conversion of pyridines 3 to pyridobenzodiazepines
5.

Since some N11-H pyridobenzodiazepines showed interest-
ing biological activities, we decided to investigate the
possibility of generating N11-H pyridobenzodiazepines as

depicted in Scheme 4. When 3-amino-2-(N-phenylamino)-
pyridine was subjected to the current reaction conditions,
unfortunately only 3H-imidazo[4,5-b]pyridine was obtained.
This result indicated that the intramolecular cyclization of
either the amide or the chloroimine intermediate to the
imidazole ring was much faster than the formation of the
benzodiazepine ring.

It is logical to explore a protecting group as R2 that can
be readily removed after the benzodiazepine ring is formed.
Unfortunately, the acetyl protected pyridine 12, prepared in
two steps, did not give the desired benzodiazepine under the
current conditions, but rather produced N1-deaza purine 13
(Scheme 5). Evidently, the protecting acetyl group (not
benzoic acid) participated the cyclization to form imidazole
analog 13 instead of the desired benzodiazepine under the
reaction conditions. On the basis of results of Schemes 4
and 5, a nonacyl protecting group should be used to access
N11-H analogs.

To demonstrate the suitability of this new method, a
pyridobenzodiazepine library was prepared by reaction of
15 carboxylic acids with pyridine 3 with various substituents
and the results are summarized in Table 3. In general, various
carboxylic acids such as aromatic, aliphatic, and heterocyclic
acids reacted well with precursors 3a to give 6,11-disubsti-
tuted pyridobenzodiazepines 5.1–5.15 in moderate to high
yields. This reaction appears to be sensitive to electronic
effects. For example, an electron-donating group on the
aromatic acid tends to speed up the reaction and to give
higher yields (entries 2–5) while electron-withdrawing groups
led to extended reaction time and lower yields (entries 6–7).
When R3 is a meta substituent there are two possible
orientations for cyclization and indeed two regio-isomers
were observed (entries 31–32). This reaction is also sensitive
to steric effect of the aliphatic acids since the presence of a
bulky group led to slower reactions (entries 11–14). Het-
eroaromatic acids, such as nicotinic acid, thiophene-3-

Table 2. Optimization of the Pyridobenzodiazepine Formation
Reaction

yield (%)

entry conditions 5.1 9.1

1 PPA (1.5 equiv)/POCl3, reflux, 40 min 58
2 PPA (1.5 equiv)/POCl3, 80 °C, 12 h then 90 °C, 7 h 64
3 PPA (1.5 equiv)/POCl3, 95 °C, 12 h 88
4 PPA (1.5 equiv)/toluene, reflux, 24 h 91
5 PPA (1.5 equiv)/xylene, reflux, 24 h 90
6 POCl3, reflux, 12 h 76
7 POCl3 (4 equiv)/CH2Cl2, reflux, 3 d 90
8 POCl3 (4 equiv)/CH3CN, reflux, 30 h 91
9 POCl3 (2 equiv)/CH3CN, reflux, 24 h 90

Scheme 4. Reaction of Diaminopyridine 3j with Benzoic
Acid

Scheme 5. Reaction of the Acetyl Protected Diaminopyridine
12 with Benzoic Acid
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carboxylic acid, and furan-2-carboxylic acid, could also
provide the desired products in moderate yields (entries
8–10).

To expand the scope of the synthesis, diaminopyridine
precursors 4 were prepared according to Scheme 6. Substitu-
tion of 4-chloro-3-nitropyridine 14 with N-methylaniline gave
pyridine 15 in 69% yield. And chlorination of compound

15 using a reported method gave 2-chloro-N4-methyl-N4-
phenylpyridine-3,4-diamine 4b.7

Application of the current benzodiazepine formation
reaction conditions to both pyridines 4a and 4b gave the
desired products 6.1–6.5 in good to high yields (Table 4).

In summary, a new synthetic route to pyridobenzodizepines
using a one-pot Bischler-Napeiralski type cyclization reac-
tion between pyridine-1,2-diamines and various carboxylic
acids under mild acidic conditions was developed. The key
cyclization reaction accommodates a large set of carboxylic
acids. The method development for a pyridobenzodiazepine
library was successfully completed as exemplified by the
preparation of a 43-member library. Given that numerous
anilines and carboxylic acids are readily available, the method
demonstrated could be readily adopted to prepare large
pyridobenzodiazepine libraries. The current strategy should
complement existing methodologies to enable rapid explora-
tion of this class of heterocycles.
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